Human Health Effects Isocyanates

Isocyanates and Health Conference

April 4, 2013

Carrie A. Redlich MD, MPH
Professor of Medicine

Program Director
Yale Occupational & Environmental Medicine Program
Yale University School of Medicine
carrie.redlich@yale.edu
Human Health Effects of Isocyanates

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
History Isocyanate-Induced Disease

- 1950: Fuchs TDI 1951
- 1956: Woodbury TDI
- 1951: Gerritsen HDI 1951
- 1960: Munn/MDI 1965
- 1957: Blake 1965
- 1976: Charles 1976
- 1970: Peters, Wegman FEV1 loss 1970, 4, 5 Persistent asthma
- 1976: HDI HP+Asthma
- 1979: Karol 1979 TDI-IgE
- 1979: Butcher 1979 SIC TDI
- 1980: Malo 1983 HDI HP+Asthma
- 1980: Zeiss 1980 HP / MDI
- 1980: MDI use > TDI 1980s
- 1983: Malo 1983 HDI HP+Asthma
- 1985: Brooks 1985 RADS
- 1979: Tarlo, Liss, Lemiere Bernstein
- 1976: Asford 1976 Chemical bronchitis firefighters

1950-1990: Timeline of isocyanate-induced disease events.
Clinical Spectrum Disease

- Rhinitis
- Contact dermatitis
- **Asthma**
- Hypersensitivity pneumonitis
- Chronic airflow obstruction – accelerated loss of lung function
Rhinitis Conjunctivitis

Common in workers with OA HMW > LMW

Allergic / irritant

Malo 1997

70 to 90% isocyanate asthmatics reported nasal / eye symptoms at some time

Ameille 2012 – large series 596 cases OA

52% LMW vs (72% HMW)

Less likely to precede asthma

? due to co-exposures, irritants
Allergic Contact Dermatitis

Aalto-Korte *Contact Dermatitis* 2012
54 patients isocyanate ACD
9 IPDI, 12 MDI, 6 TDI, 1 HDI
Motor vehicle, paint industries, construction work

Recent cases with
Toilet seat
Jewelry – isocyanates in resin
PMDI adhesives

Issues with patch testing
Uncommon or are we missing some cases?
Hypersensitivity Pneumonitis

First reported 1976
TDI, MDI, HDI

Acute – flu-like illness, fever, SOB, fatigue, cough
Chronic – progressive SOB, fibrosis, hypoxia
Non-specific
Ddx – flu, pneumonia
Chest xray – infiltrates
Likely overlaps with isocyanate asthma
Clinical Spectrum Disease

- Rhinitis
- Contact dermatitis
- **Asthma**
- Hypersensitivity pneumonitis
- Chronic airflow obstruction – accelerated loss of lung function
Isocyanate Asthma – Key features

Clinical presentation similar to “atopic” asthma
Onset months to yrs after exposure (usually in first yr)
Acute / delayed / atypical responses – asthma symptoms immediate and / or hrs after exposure common
Once “sensitized” exposure to very low levels triggers asthma
Most cases occur in settings where “no exposure” – air levels very low / non-detectable
Skin exposure likely key route sensitization
Large number end-user settings – frequently mixed variable intermittent exposures – especially difficult measure
No simple diagnostic test
Over time respond to multiple triggers, less specific
<table>
<thead>
<tr>
<th>ID numbers</th>
<th>756</th>
<th>770</th>
<th>771</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age yrs</td>
<td>35</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Prior asthma</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Job title</td>
<td>Energy auditor</td>
<td>Insulator</td>
<td>Insulator</td>
</tr>
<tr>
<td>Tasks</td>
<td>Inspect homes, Spray foam</td>
<td>Spray foam</td>
<td>Helper, set up, clean up</td>
</tr>
<tr>
<td>Onset symptoms after new / modified job</td>
<td>4 months, 1 month after main sprayer</td>
<td>5 yrs, 2 months after very large job</td>
<td>1 yr, progress over 2 ½ yrs before diagnosis</td>
</tr>
<tr>
<td>Symptoms</td>
<td>WR cough, wheeze, SOB</td>
<td>WR cough, wheeze, SOB, Skin rash, Halo vision</td>
<td>WR eye cough, SOB, Halo vision</td>
</tr>
<tr>
<td>Initial diagnosis</td>
<td>Asthma in ER</td>
<td>Pneumonia, urticaria in ER</td>
<td>Bronchitis, COPD</td>
</tr>
<tr>
<td>Smoking</td>
<td>Former</td>
<td>½ ppd</td>
<td>Former</td>
</tr>
</tbody>
</table>
Human Health Effects of Isocyanates

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
Isocyanate Asthma: Diagnosis

1) Confirm diagnosis of asthma
2) Assess exposures associated with asthma
3) Determine association between isocyanate exposure and asthma
 - History / questionnaire
 - Peak flows
 - SIC
 - Isocyanate-specific IgE
Definition Asthma

Harrison’s - Asthma is a syndrome characterized by airflow obstruction that varies both spontaneously and with specific treatment.

Wikipedia - Asthma is the common chronic inflammatory disease of the airways characterized by variable and recurring symptoms, reversible airflow obstruction, and bronchospasm.

Merck Manual - Asthma is a disease of diffuse airway inflammation caused by a variety of triggering stimuli resulting in partially or completely reversible bronchoconstriction.
What is Asthma?

Fishman’s Pulmonary Disorders - A precise definition of asthma remains elusive.

Chest Medicine - Despite a number of formal attempts over a 30-year period, a universally accepted definition of asthma is unavailable. It is likely that asthma is not a specific disease but a syndrome. Important features include asthmatic symptoms, airway inflammation, hyperreactivity …… All of these features need not be present.
Isocyanate Asthma: Diagnosis

1) Confirm diagnosis of asthma

2) Assess exposures associated with asthma

3) Determine association between isocyanate exposure and asthma
 - History / questionnaire
 - Peak flows
 - SIC
 - Isocyanate-specific IgE
<table>
<thead>
<tr>
<th>ID numbers</th>
<th>756</th>
<th>770</th>
<th>771</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age yrs</td>
<td>35</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Prior asthma</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Job title</td>
<td>Energy auditor</td>
<td>Insulator</td>
<td>Insulator</td>
</tr>
<tr>
<td>Tasks</td>
<td>Inspect homes, Spray foam</td>
<td>Spray foam</td>
<td>Helper, set up, clean up</td>
</tr>
<tr>
<td>Onset symptoms after new / modified job</td>
<td>4 months, 1 month after main sprayer</td>
<td>5 yrs, 2 months after very large job</td>
<td>1 yr, progress over 2 ½ yrs before diagnosis</td>
</tr>
<tr>
<td>Symptoms</td>
<td>WR cough, wheeze, SOB</td>
<td>WR cough, wheeze, SOB, Skin rash Halo vision</td>
<td>WR eye cough, SOB, Halo vision</td>
</tr>
<tr>
<td>Initial diagnosis</td>
<td>Asthma in ER</td>
<td>Pneumonia, urticaria in ER</td>
<td>Bronchitis, COPD</td>
</tr>
<tr>
<td>Smoking</td>
<td>Former</td>
<td>½ ppd</td>
<td>Former</td>
</tr>
<tr>
<td>Spirometry</td>
<td>Mild obstruction</td>
<td>Mild obstruction</td>
<td>Mild obstruction</td>
</tr>
<tr>
<td>Bronchodilator resp</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Total IgE IU/ml (nl <100)</td>
<td>19.7</td>
<td>18.3</td>
<td>50.2</td>
</tr>
<tr>
<td>MDI-IgE ratio (nl <2)</td>
<td>2.2</td>
<td>2.1</td>
<td>3.0</td>
</tr>
<tr>
<td>MDI-IgG titer ng/ml</td>
<td>1:5120 9,150</td>
<td>1:2560 3,350</td>
<td>1:5120 10,420</td>
</tr>
<tr>
<td>PPE used</td>
<td>Cartridge respirator Variable No fit testing</td>
<td>Cartridge respirator Variable No fit testing</td>
<td>Cartridge respirator Variable No fit testing</td>
</tr>
<tr>
<td>Skin exposure noted</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Outcome</td>
<td>Left work, unsuccessful attempts to return</td>
<td>Left work, retrained truck driver, Improved</td>
<td>Unemployed for > 1 yr Chronic symptoms</td>
</tr>
</tbody>
</table>
Case: PU spray foam sprayer
MDI-IgG over time

Worse asthma. Leaves PU foam work

Needs job. Returns to PU spray foam work.
Epidemiologic vs Clinical Definition of Asthma

- MD diagnosis
- Symptoms
- Patient diagnosis
- Hospitalizations
- Spirometry + BD
Clinical Disease Research Gaps

Need for better diagnostic tools
Need for marker sensitization
Better understand overlap syndromes
Human Health Effects of Isocyanates

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
Inflammatory Cell Influx

Subepithelial Fibrosis

Epithelial Cell Abnormalities

Mucus Hypersecretion

Smooth Muscle Cell Hyperplasia

Inflammatory Cell Influx
Isocyanate Asthma Pathogenesis

Exposure

Skin or airborne

Sensitization

Lung

Skin

APC

T cells

B cells

Iso - GSH – oxidants

Iso-albumin

tachykinins

Mediators/chemokines

IL-4, IL-5

MCP-1

IL-8, IFN-γ, TNF

ICAM-1

Airway Inflammation: Eos, Icyltes, PMNs
Hypothesis

Skin may be an important site for systemic sensitization to environmental / occupational agents – promote development asthma

Factors that facilitate absorption / disrupt skin barrier function may increase skin exposure, promoting sensitization and asthma (e.g. excess hand washing)

Important implications

- Exposure – response relationships (sensitization / elicitation)
- Mechanistic studies – skin vs lung different pathways

Prevention – reduction of airborne exposures may not be effective / sufficient
Isocyanate + Co-exposures

Skin

Lung

- Damaged epithelial barrier
- Initiation of Th2 immune response
- Sensitized host
- Clinical outcomes: atopy and asthma

- Enzymatically active allergen like HDM
- EC
- TSLP
- GM-CSF
- IL-33
- IL-25
- CCL2
- CCL20
- OX40L
- ST2
- Attracting DCs
- Th2
- CD40
- Jagged1
- low IL-12

- NF-κB
- IL-1α
- IL-1β

- Th2-inducing potential
- Maturation

- DC
Isocyanate Asthma: Pathogenesis

• Similar to adult asthma
• Behaves like an immune disease – immune memory
• Problem is
 – Don’t know what the “real” antigen(s) is
 – Don’t have a good marker for sensitization

BUT WHERE KNOWLEDGE IS REALLY LACKING IS
Human Health Effects of Isocyanates

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
Epidemiology is the study of the patterns, causes, and effects of health and disease in defined populations. It is the cornerstone of public health, and informs policy decisions and evidence-based medicine by identifying risk factors for disease and targets for preventive medicine.
Epidemiology Literature

• How common is isocyanate asthma?

• What are the major (modifiable) risk factors?
How common is isocyanate asthma today? What % currently exposed workers have isocyanate asthma? (prevalence)

a) < 5 %
b) 5-10%
c) 15 – 25%
d) > 30%
e) None of the above
<table>
<thead>
<tr>
<th>Study</th>
<th>Agent</th>
<th>Process / Occupation</th>
<th>Study Group</th>
<th>Outcomes</th>
<th>Follow-Up (years)</th>
<th>Diagnosis / Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodbury, 1956</td>
<td>TDI</td>
<td>TDI Production</td>
<td>25</td>
<td>5.0%</td>
<td>1</td>
<td>Sxs, MD</td>
</tr>
<tr>
<td>Peters, 1968, 1970, 1974</td>
<td>TDI</td>
<td>TDI Production</td>
<td>38</td>
<td>Decline FEV1</td>
<td>3</td>
<td>PFTs</td>
</tr>
<tr>
<td>Wegman, 1974, 1977, 1982</td>
<td>TDI</td>
<td>TDI Production</td>
<td>112 to 37 (at 4 yrs)</td>
<td>Decline FEV1</td>
<td>4</td>
<td>PFTs</td>
</tr>
<tr>
<td>Adams, 1975</td>
<td>TDI</td>
<td>TDI Production</td>
<td>565</td>
<td>5.6%</td>
<td>11</td>
<td>MD</td>
</tr>
<tr>
<td>Porter, 1975</td>
<td>TDI</td>
<td>TDI Production</td>
<td>300</td>
<td>0.9%</td>
<td>18</td>
<td>PFTs</td>
</tr>
<tr>
<td>Butcher, 1977</td>
<td>TDI</td>
<td>TDI Production</td>
<td>277</td>
<td>3%</td>
<td>5.5</td>
<td>PFTs</td>
</tr>
<tr>
<td>Diem, 1982</td>
<td>TDI</td>
<td>TDI Production</td>
<td>277</td>
<td>1.0%</td>
<td>5</td>
<td>PFTs</td>
</tr>
<tr>
<td>Weill, 1979, 1981</td>
<td>TDI</td>
<td>TDI Production</td>
<td>277</td>
<td>0-1%</td>
<td>1.5</td>
<td>Immunologic SIC</td>
</tr>
<tr>
<td>Musk, 1982</td>
<td>TDI</td>
<td>TDI Production</td>
<td>259 to 94 at 5 yr</td>
<td>FEV1 neg</td>
<td>10</td>
<td>PFTs</td>
</tr>
<tr>
<td>Grammer, 1988</td>
<td>HDI</td>
<td>Spray painters</td>
<td>150</td>
<td>0%</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>126 f/up</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, 1992</td>
<td>TDI</td>
<td>TDI Production</td>
<td>386</td>
<td>0.7%</td>
<td>4</td>
<td>PFTs</td>
</tr>
<tr>
<td>Clark, 1998, 2003</td>
<td>TDI</td>
<td>TDI foam 12 UK factors</td>
<td>780</td>
<td>10 left resp illness</td>
<td>5</td>
<td>PFTs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f/up 251</td>
<td></td>
<td>FEV1 neg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ott, 2000</td>
<td>TDI</td>
<td>TDI Production</td>
<td>297</td>
<td>1.1%</td>
<td>29</td>
<td>PFTs</td>
</tr>
<tr>
<td>Bodner, 2001</td>
<td>TDI</td>
<td>TDI Production</td>
<td>305</td>
<td>FEV1 neg</td>
<td>26</td>
<td>PFTs</td>
</tr>
<tr>
<td>Petsonk, 2000</td>
<td>MDI</td>
<td>Wood products</td>
<td>214</td>
<td>10 to 14%</td>
<td>2</td>
<td>Symptoms air levels ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f/up 144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassidy</td>
<td>HDI</td>
<td>HDI Production</td>
<td>100 + control</td>
<td>FEV1 neg</td>
<td>> 10 yrs</td>
<td>PFTs</td>
</tr>
</tbody>
</table>
Selected Cross-Sectional Studies Isocyanate Exposed Workers

Prevalence of Isocyanate Asthma / Symptoms

<table>
<thead>
<tr>
<th>Study</th>
<th>Agent</th>
<th>Process / Occupation</th>
<th>Study Group N</th>
<th>Prevalence IA %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruckner, 1968</td>
<td>TDI</td>
<td>R&D</td>
<td>26</td>
<td>19%</td>
</tr>
<tr>
<td>Tanser, A.R.</td>
<td>MDI</td>
<td>PU rigid foam</td>
<td>57</td>
<td>7%</td>
</tr>
<tr>
<td>White, 1980</td>
<td>TDI</td>
<td>PU seat covers</td>
<td>57</td>
<td>30%</td>
</tr>
<tr>
<td>Baux, 1981</td>
<td>TDI</td>
<td>Plastics, varnish</td>
<td>195</td>
<td>28%</td>
</tr>
<tr>
<td>Tse, 1985</td>
<td>MDI</td>
<td>Foundry</td>
<td>76</td>
<td>13%</td>
</tr>
<tr>
<td>Liss, 1988</td>
<td>MDI</td>
<td>Foundry</td>
<td>27</td>
<td>31%</td>
</tr>
<tr>
<td>Wang, 1988</td>
<td>TDI</td>
<td>Adhesive</td>
<td>38</td>
<td>0 to 85% symptoms</td>
</tr>
<tr>
<td>Huang, 1991</td>
<td>TDI</td>
<td>Varnish 3 factories</td>
<td>48</td>
<td>0 to 27%</td>
</tr>
<tr>
<td>Vandenplas, 1993</td>
<td>HDI</td>
<td>Spraying</td>
<td>9</td>
<td>45%</td>
</tr>
<tr>
<td>Bernstein, 1993</td>
<td>MDI</td>
<td>Injection mold plant</td>
<td>243</td>
<td>4%; Occ rhinitis 36%</td>
</tr>
<tr>
<td>Kim, 1997</td>
<td>TDI</td>
<td>Spraying</td>
<td>81</td>
<td>10%</td>
</tr>
<tr>
<td>Woellner, 1997</td>
<td>MDI</td>
<td>wood products</td>
<td>~ 130</td>
<td>14%</td>
</tr>
<tr>
<td>Redlich 2001</td>
<td>HDI</td>
<td>auto body</td>
<td>75</td>
<td>0% (34% HDI-IgG)</td>
</tr>
<tr>
<td>Pronk, 2007</td>
<td>HDI</td>
<td>241 spray painters</td>
<td>241</td>
<td>8.3% occ asthma symptoms 20% Occ rhinitis</td>
</tr>
</tbody>
</table>
Other sources information

- Surveillance reporting systems
- Workers compensation data
- Population studies
- Medical surveillance
• How common is isocyanate asthma?

• What are the major (modifiable) risk factors?
 a) Home pets
 b) Smoking
 c) Atopy
 d) Work exposures
 e) All of the above
Risk Factors Isocyanate Asthma

• EXPOSURE is by far the most important risk factor
• Atopy, smoking, exposure to other allergens are not risk factors
• Genetic factors – Dr. Bernstein

• What types of exposures pose the greatest risks?
• Skin, air, peak exposures, specific isocyanate formulations, particulates, thermal degradation products ????
Research Gaps

• Need for longitudinal epidemiology studies of highest risk populations (new workers)

• Better understand risks – incidence / prevalence

• Best understand risk factors – especially exposure
Human Health Effects of Isocyanates: Clinical Spectrum, Pathogenesis, Epidemiology and Outcomes

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
<table>
<thead>
<tr>
<th>Study</th>
<th>Number Subjects</th>
<th>Duration of Follow-Up (yrs)</th>
<th>Persistence of Symptoms</th>
<th>Persistence NSBRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paggiaro, 1984</td>
<td>12</td>
<td>1-3</td>
<td>66%</td>
<td>58%</td>
</tr>
<tr>
<td>Lozewicz, 1987</td>
<td>50</td>
<td>>4</td>
<td>82%</td>
<td>63%</td>
</tr>
<tr>
<td>Rosenberg, 1987</td>
<td>20</td>
<td>0.5 to 4</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>Tarlo, 1997</td>
<td>114</td>
<td>1.9</td>
<td>80%</td>
<td>69%</td>
</tr>
<tr>
<td>Piirila, 2000</td>
<td>235</td>
<td>10</td>
<td>82%</td>
<td>51%</td>
</tr>
<tr>
<td>Padoan, 2003</td>
<td>87</td>
<td>> 10 yrs</td>
<td>71%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Workers who left exposure had better asthma outcomes than those who had on-going exposures

Recommendation: Removal from further exposure (ERS, ACCP, Industry)
Isocyanate Asthma: Outcomes

Persistent asthma away from causative agent(s) common
Earlier removal from exposure better outcome
Socioeconomic outcomes poor
Unemployed – 25-40%
Loss income – 40-80%
High costs – medical, workers comp etc

Vandenplas ERJ 2003

MANAGEMENT
Remove from exposure
Standard asthma medications
Human Health Effects of Isocyanates: Clinical Spectrum, Pathogenesis, Epidemiology and Outcomes

- Clinical spectrum
- Pathogenesis
- Epidemiology
- Diagnosis (Phil Harber)
- Outcomes and Management
- Surveillance / Prevention (Phil Harber)
Thank you

Questions ????